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Most genome-wide association studies (GWAS) of com-
plex traits are performed using models with additive allelic
effects. Hundreds of loci associated with type 2 diabetes
have been identified using this approach. Additive models,
however, canmiss loci with recessive effects, thereby leav-
ing potentially important genes undiscovered. We con-
ducted the largest GWAS meta-analysis using a recessive
model for type 2 diabetes. Our discovery sample included
33,139 case subjects and 279,507 control subjects from 7
European-ancestry cohorts, including the UK Biobank. We
identified 51 loci associated with type 2 diabetes, including
five variants undetected by prior additive analyses. Two
of the five variants had minor allele frequency of <5% and
were each associated with more than a doubled risk
in homozygous carriers. Using two additional cohorts,
FinnGen and a Danish cohort, we replicated three of the
variants, including one of the low-frequency variants, rs11
5018790, which had an odds ratio in homozygous carriers

of 2.56 (95% CI 2.05–3.19; P = 1 × 10216) and a stronger
effect in men than in women (for interaction, P = 7 × 1027).
The signal was associated with multiple diabetes-related
traits, with homozygous carriers showing a 10% decrease
in LDL cholesterol and a 20% increase in triglycerides;
colocalization analysis linked this signal to reduced expres-
sion of the nearby PELO gene. These results demonstrate
that recessive models, when compared with GWAS using
the additive approach, can identify novel loci, including
large-effect variants with pathophysiological conse-
quences relevant to type 2 diabetes.

Type 2 diabetes affects nearly 1 in 12 adults globally (1),
but its genetic architecture is still not fully understood.
Over the past decade, large genome-wide association stud-
ies (GWAS) have used additive models to identify hun-
dreds of associated loci (2–5). Additive models are most
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powerful when the effect of two copies of a risk allele is
twice that of one copy. This model is computationally
simple and statistically powerful, but it does not always
match the pattern of inheritance of Mendelian disorders,
including monogenic forms of diabetes, which can be
transmitted in a dominant or recessive fashion (6). Var-
iants with recessive effects, particularly low-frequency
variants, can go undetected by additive models (7), sug-
gesting that nonadditive models have the potential to
generate new biological insights.

To date, recessive models have been used in a handful of
studies to identify genetic associations with type 2 diabetes,
but these have been limited by small sample sizes (7–9).
Nevertheless, some promising findings have emerged. In a
Greenlandic population, homozygous carriers of two copies
of a nonsense mutation in the TBC1D4 gene, which facili-
tates glucose transfer into skeletal muscle in the setting of
insulin stimulation, had a 10-fold increase in diabetes risk
compared with other individuals in the same population
(8). Hyperglycemia due to this variant occurs postprandially,
so the diagnosis of type 2 diabetes in homozygous carriers
often requires an oral glucose tolerance test, creating an
opportunity for precision medicine (10). More recently,
members of our group conducted GWAS with nonadditive
models for several age-related diseases (11) and identified
multiple new loci, including one rare variant (rs77704739)
associated with type 2 diabetes. This variant was also asso-
ciated with reduced expression of the PELO gene, whose
connection to diabetes is not well understood.

We have conducted potentially the largest GWAS meta-
analysis reported to date using a recessive model for type
2 diabetes. Over the past few years, GWAS sample sizes
have grown exponentially (12), and reference panels for
imputation have improved, making it easier to ascertain
low-frequency variants accurately (13). To take advantage
of these developments, we combined data from seven dis-
covery cohorts and two replication cohorts to conduct the
recessive-model GWAS for type 2 diabetes or any other
disease. We identified and replicated multiple variants
missed by larger additive studies, confirmed and fine
mapped the association near PELO, and conducted a phe-
nome-wide association analysis to identify other affected
traits to better understand the pathophysiology underly-
ing this novel association.

RESEARCH DESIGN AND METHODS

Study Population and Outcome Definition
We used data from multiple European-ancestry cohorts
(Supplementary Table 1) including the UK Biobank (14),
five cohorts known collectively as 70K for T2D (4), and
the Mass General Brigham (MGB) Biobank (15). The UK
Biobank is a sample of approximately half a million peo-
ple recruited in the United Kingdom between the ages of
40 and 69 years. The 70K for T2D cohort consists of 5
studies with publicly available data, and the MGB Biobank
consists of �50,000 people recruited within a hospital

system in the United States. We only considered individu-
als whose family relatedness was lower than that of
third-degree relatives.

Definitions of type 2 diabetes varied according to cohort.
In the UK Biobank, for example, we used a validated algo-
rithm designed specifically to identify cases of diabetes in
that cohort (16). In the MGB Biobank, type 2 diabetes was
defined according to an algorithm developed by the Biobank
team (17) to have 99% positive predictive value. In the UK
and MGB Biobanks, which both have a relatively low preva-
lence of type 2 diabetes, we excluded control subjects youn-
ger than 55 years, because the mean age of onset for type 2
diabetes is �50 years (18).

Recessive Genome-Wide Meta-Analysis
Genotyping, phasing, and imputation, as well as sample
and variant quality control, were conducted according to
cohort-specific protocols (Supplementary Table 1). For the
recessive analysis in each cohort, we controlled for age,
sex, BMI, and principal components. For the UK Biobank,
we also controlled for the genotyping platform, because
two different genotyping arrays were used. For one of the
five cohorts within 70K for T2D (6% of the cases in our
discovery sample), age and BMI data were not available.
In our models, we used the minor allele in Europeans as
the recessive allele, not necessarily the nonreference allele,
to maximize our chances of identifying variants missed by
prior GWAS.

For the UK and MGB Biobanks, computations were
conducted using Hail, version 0.2 (https://hail.is),
and the 70K for T2D cohort was analyzed using the
program SNPTEST (https://mathgen.stats.ox.ac.uk/
genetics_software/snptest/snptest.html). After gener-
ating summary statistics using a recessive model for
each cohort, we used the program METAL to meta-analyze
the results (19), weighting cohorts by the inverse of the SE
for each variant. Our threshold for genome-wide signifi-
cance was P = 5 × 10�8, and we considered signals within
0.5 megabase pairs (Mb) to be part of the same locus. For
comparison, we repeated our approach using an additive
model. To visually inspect each genome-wide significant
locus, we used the program LocusZoom (20). We estimated
the power of our recessive and additive models to detect
variants acting recessively across a range of allele frequen-
cies and effect sizes, using a simulation-based approach,
assuming a baseline case prevalence of 10%, similar to our
case-control ratio.

Defining Novel Recessive Signals
We compared our results with those of the largest additive
GWAS with available summary statistics (2,3), and we
defined signals as novel if they were not in significant link-
age disequilibrium (LD) with a known signal (r2 < 0.3).
This analysis was conducted with R, version 3.6 (https://
www.R-project.org) and the R package LDlinkR (21,22). The
LD information was calculated using a British reference
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panel (1000 Genomes Project). For each signal, we used
PLINK, version 1.9 (23) to calculate dominance deviation P
values (24) using data from the UK Biobank and GERA, the
largest cohort within 70K for T2D, and then we meta-ana-
lyzed the results. Signals were deemed to be nonadditive if
this P was <0.05. To ensure that signals near the major his-
tocompatibility complex (MHC) region were not due to con-
tamination of our cases with cases of type 1 diabetes, which
is known to be heavily associated with haplotypes in the
MHC region, we performed conditional analysis in the UK
Biobank sample, adjusting for MHC haplotypes relevant to
type 1 diabetes (25). We excluded variants that lost signifi-
cance by more than one order of magnitude.

Replication
We attempted to replicate our novel findings in two
cohorts: FinnGen and a Danish cohort (Supplementary
Table 2). FinnGen is a study based in Finland that com-
bines genotyping with digital health data of >100,000 peo-
ple, and the Danish cohort consists of >20,000 individuals
(22% cases) from Denmark. The program SNPTEST was
used to analyze both cohorts. We meta-analyzed the results
from the replication cohorts with our initial results, using
the R package rmeta.

Credible Sets
For each novel variant, we identified the set of variants
with 99% probability of containing the causal variant. We
used a Bayesian refinement approach (26), considering
variants in LD with the lead variant (r2 > 0.1). Each credi-
ble set is akin to a CI for the true causal variant. Within a
locus, each variant is assigned an approximate Bayes fac-
tor (ABF) on the basis of the following equation:

ABF ¼ ffiffiffiffiffiffiffiffiffiffi

1� r
p

erz
2=2

where r ¼ 0:04=ðSE210:04Þ and z ¼ b=SE. The b and
SE values are the estimated effect size and corresponding
SE, respectively, from the recessive-model logistic regres-
sion. This calculation assumes a Gaussian prior with mean
of 0 and variance of 0.04. The posterior probability for a
variant is equal to its ABF divided by the sum of all ABF
values for the locus. Variants are ranked by ABF in decreas-
ing order, and the cumulative probability is calculated
starting at the top of the list and stopping when the value
exceeds 99%.

Colocalization with Gene Expression
To shed light on variants’ functional consequences, we
used the Genotype-Tissue Expression (GTEx) project, ver-
sion 8 (27). This database links genetic variants with tis-
sue-specific gene expression, enabling identification of
expression quantitative trait loci (eQTLs). For our most
significant variant, which was an eQTL for the gene
PELO, we performed colocalization analysis to confirm
that our GWAS signal matched the signal influencing
gene expression. Colocalization analysis compares P

values for two traits across a locus to generate a posterior
probability for the hypothesis that both traits are being
influenced by the same variant. Because of the rarity of
homozygous carriers of our variants, we used additive
summary statistics from GTex for this analysis. We used
the R package “coloc” (28) and considered a window of
1 Mb around our leading signal. We also investigated our
most significant variant in the Translational Human Pan-
creatic Islet Genotype Tissue-Expression Resource (https://
tiger.bsc.es), a genotype-expression resource with data
from >500 pancreatic islets (29).

Phenome- and Metabolome-Wide Association Study
For the variant located near the PELO gene, we performed
a phenome-wide association study (PheWAS) in the UK
Biobank, which provides detailed information about each
participant’s health, dietary habits, and lifestyle character-
istics. Phenotypes were curated and transformed using
the Phenome Scan Analysis Tool (30). As in our GWAS,
we used a recessive model. We used logistic regression for
binary phenotypes and linear regression for continuous
phenotypes. We controlled for age, sex, 10 principal com-
ponents, and the genotyping platform. Limiting our binary
phenotypes to those with more than five cases among
homozygotes for the risk variant, we analyzed 1,731 binary
phenotypes, 30 biomarkers such as cholesterol levels, and
1,345 other continuous phenotypes. We also analyzed a
subset of UK Biobank participants (90,644 participants)
with metabolomic data (n = 249 metabolites) generated by
nuclear magnetic resonance by Nightingale Health (31). To
illustrate our metabolomic results, we generated volcano
plots using the R package EnhancedVolcano and a heat map
using the R package ggplot2. For significant associations,
we used colocalization analysis to quantify the probability
that the phenotype shared the same causal variant as type
2 diabetes. We used the R package mediation for mediation
analysis (32). We also performed a PheWAS in the Danish
cohort; we looked at 16 glycemic traits, using the same
covariates as we did when analyzing the UK Biobank data.

Sex-Stratified Analysis
To test whether the genetic effects of the variant near the
PELO gene differed by sex, we performed a sex-stratified
analysis within the UK Biobank for the biomarkers in our
data set and also for type 2 diabetes itself. We assessed
the significance of the difference between sexes by includ-
ing an interaction term in our regression model. We then
confirmed sex-specific differences for type 2 diabetes in
our two replication cohorts.

Data and Resource Availability
The complete summary statistics from this study will be
deposited and made available at the Common Metabolic
Diseases Knowledge Portal (https://cmdkp.org/).
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RESULTS

Genome-Wide Meta-Analysis Using a Recessive Model
Our discovery sample consisted of 33,139 case subjects
with type 2 diabetes and 279,507 control subjects from
seven cohorts. We meta-analyzed 11,634,328 variants
and fitted additive and recessive models to compare the
results. We identified 51 loci (Supplementary Table 3)
that reached genome-wide significance in the recessive
model, and 121 loci using the additive model (Fig. 1). Of
the 51 signals identified with the recessive model, 33%

deviated from additivity (for dominance deviation, P <
0.05), and of these, five were distinct from the set of pre-
viously reported additive signals (Table 1).

The strongest recessive signal (rs115018790) was lo-
cated within an intron of the PELO and ITGA1 genes on
chromosome 5 (Fig. 2) and was in complete LD (r2 = 1)
with the lead variant (rs77704739) that was previously
identified in the GERA cohort (11), one of the discovery
cohorts in this study. With minor allele frequency (MAF)
0.04, rs115018790 had an odds ratio (OR) for homozygous

Figure 1—Miami plot comparing recessive and additive results. Nonadditive signals are purple and labeled. The dark red line is the thresh-
old for genome-wide significance.
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carriers of 2.63 (95% CI 2.03–3.41), much greater than the
additive-model OR of 1.07 (95% CI 1.02–1.12). The P value
for the recessive model (P = 3 × 10�13) was 10 orders of
magnitude more significant than the additive one, and the
dominance deviation test confirmed the variant’s recessive
nature (P = 3 × 10�5). This variant was near known addi-
tive signals (rs17261179, rs3811978, and rs62357230)
associated with type 2 diabetes (2), but it was not in strong
LD with any of these previously identified variants (maxi-
mum r2 = 0.08).

We identified another nonadditive, low-frequency vari-
ant (rs140453320) with large effect size on chromosome
5. This variant (MAF 0.01; OR 6.94 [95% CI 3.63–13.27];
P = 5 × 10�9) lies within an intron of the gene ADAMTS6.
The additive P value was 0.48, leading to highly signifi-
cant dominance deviation (P = 4 × 10�9). This signal was
more than 1 Mb away from any previously known signal
associated with type 2 diabetes.

The other three novel nonadditive signals were signifi-
cantly more common, each with MAF >30%. Two of the
three were located <0.5 Mb from known additive loci,
but these signals were in weak LD with previously reported
associations, with maximum r2 between 0.1 and 0.3 (Sup-
plementary Table 4). The third (rs755900673) was an
insertion-deletion (OR 1.13 [95% CI 1.08–1.17]; P = 5 ×
10�9) on chromosome 8 located within an intron of the
MYOM2 gene, more than 7 Mb away from any locus addi-
tively associated with type 2 diabetes.

We performed power simulations for our top variant
(rs115018790; MAF 0.04; OR 2.63) and found that a
genome-wide association study with an additive model
with our case-control ratio would need �1.8 million par-
ticipants to have 80% power to detect a genome-wide sig-
nificant signal, whereas a recessive model would only
need 160,000 participants. At higher allele frequencies,
the benefits of the recessive model become much less pro-
nounced (Supplementary Figure 1).

Replication
Our two replication cohorts consisted of 28,336 case sub-
jects and 62,253 control subjects. Of the four nonadditive
signals for which we had sufficient power, three replicated,
and one did not (Table 1, Supplementary Figure 2). Variant
rs115018790 replicated in both cohorts (meta-analysis OR
2.56 [95% CI 2.05–3.19]; P = 1 × 10�16). Two of the other
three variants for which we had power also replicated. The
insertion-deletion near MYOM2, rs755900673, did not repli-
cate (P = 0.84) and showed high heterogeneity (P = 0.008).

Our power to replicate the rare variant near ADAMTS6
was limited. The lack of replication was likely related to
the small number of homozygous carriers in our replica-
tion samples (n = 10 in FinnGen; n = 3 in the Danish
cohort) as opposed to poor imputation, as the info score
in FinnGen was 0.98. Nevertheless, the signal retained
genome-wide significance when we meta-analyzed the dis-
covery and replication cohorts (P = 3 × 10�8).
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Gene Expression Colocalization Analysis
Using GTEx data, we found that rs115018790 was associ-
ated with reduced PELO expression in multiple tissues,
although it was not an eQTL in pancreatic islets, accord-
ing to the Translational Human Pancreatic Islet Genotype
Tissue-Expression Resource database. Colocalization anal-
ysis, which tests the hypothesis that traits are associated
and share a single causative variant, confirmed the link
between rs115018790 and reduced PELO expression in
many tissues, including subcutaneous adipose tissue (pos-
terior probability 0.99; n = 581), skeletal muscle (poste-
rior probability 0.99, n = 706), and the pancreas
(posterior probability 0.96, n = 305). Colocalization plots
(Supplementary Figure 3) comparing the recessive P val-
ues for the association with type 2 diabetes with additive
P values from the gene expression data set showed a high
degree of correlation between the two sets of P values,
visually confirming the rs115018790s connection to
reduced PELO gene expression. The signal’s 99% credible
set (Supplementary Table 5) contains rs185240714 (pos-
terior probability 0.23), which is located in the 50 untrans-
lated region of the PELO transcription start site, further
supporting a causal link, although it is difficult to tell
which variant is causal, because the 99% credible set at
this locus contains six variants in near-complete LD.

Phenome-Wide Association Study
Using a recessive model, we found that multiple bio-
markers (Fig. 3) were associated with rs115018790 in the
UK Biobank. Homozygotes for the risk allele had signifi-
cantly higher levels of triglycerides and lower levels of

LDL, HDL, and total cholesterol. Effect sizes were large.
For example, being a homozygous carrier of the risk allele
was associated with a 0.35 mmol/L (14 mg/dL) decrease
in LDL level (10% change relative to the mean) and a
0.35 mmol/L (31 mg/dL) increase in levels of triglycerides
(20%). These associations, particularly for triglycerides,
were less significant using an additive model (Supp-
lementary Table 6), suggesting that rs115018790 acts in
a recessive manner for these traits as well. Colocalization
analysis (Supplementary Figure 3) confirmed that these
lipid associations are the result of a single shared variant
(posterior probability > 0.99 for each trait). It did not
appear that medication use was responsible for the
observed effects on lipids, because homozygotes for the
risk allele were less likely (OR 0.66 [95% CI 0.49–0.88];
P = 0.005) to be using LDL-lowering therapy. Other bio-
markers associated with rs115018790 included albumin
and C-reactive protein. There was also a nominally signifi-
cant (P = 0.01) association with estradiol. The other novel
variants did not have comparably significant and numer-
ous biomarker associations (Supplementary Table 7).

When we examined nonbiomarker phenotypes (Supp-
lementary Table 8) using a recessive model, we found that
the variant near PELO was associated with a variety of
hematologic features (eg, decreased blood cell count, inc-
reased reticulocyte count and percentage, increased mean
corpuscular hemoglobin and volume, and decreased red
blood cell distribution width) as well as increased alcohol
intake frequency. None of the binary phenotypes reached a
strict Bonferroni-corrected significance threshold of 1.5 ×
10�5, but the top two phenotypes were metformin use (OR

Figure 2—Replication of variant rs115018790. (A) A forest plot of the discovery and replication cohorts. Cohort-specific odds ratios are
denoted by boxes proportional to the size of the cohort, and error bars represent the 95% CI. (B) Discovery GWAS P values at the PELO
locus. Each dot represents a variant, with its genomic position (hg19) on the x-axis and its P value (�log10) on the y-axis. Nearby genes
are shown at the bottom of the plot. chr5, chromosome 5; Het, heterogeneity.
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2.27 [95% CI 1.56–3.31]; P = 2 × 10�5) and diabetes diag-
nosed by a doctor (OR 1.87 [95% CI 1.39–2.54]; P = 6 ×
10�5). We did not detect significant associations with car-
diovascular phenotypes such as heart attack or stroke, after
correcting for multiple testing.

We investigated the variant’s effect on subcutaneous
adipose tissue stores, as measured by impedance, and we
did find that the effect was nominally associated with
reduced fat mass in the lower extremities (Supplementary
Table 9), raising the possibility of a lipodystrophy-like
phenotype, although we did not observe sex-specific
effects for this locus. We could not examine phenotypes
such as liver fat content (based on MRI), because small
sample sizes precluded the use of a recessive model.

In the Danish cohort, our power to detect recessive
associations with glycemic traits was limited due to the low
number of homozygous carriers (Supplementary Table 10).
None of the traits were recessively associated with the vari-
ant. In an additive analysis, the variant was associated with
increased insulin and C-peptide levels at the 120-min time
point of an oral glucose tolerance test.

Sex-Stratified Analysis
Because the variant near PELO was nominally associated
with estradiol, we performed an analysis stratified by sex
and, in the case of women, by menopause status. We found
that the effect of rs115018790 on estradiol was only signif-
icant in premenopausal women, with homozygotes for the

Figure 3—Biomarker associations for variant rs115018790. The figure to the left shows effect sizes normalized by each trait’s SD. The
error bars in the figure to the left represent 95% CIs.
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risk allele having higher estradiol levels (174 pmol/L [95%
CI 49–300]; P = 0.006) than other premenopausal women.
For other biomarkers such as cholesterol and triglycerides,
effects were stronger in men than in women (Fig. 3,
Supplementary Table 6). For example, the recessive associa-
tion with triglycerides was >12 orders of magnitude more
significant in men (P = 3 × 10�16) than in women (P =
0.002).

We also performed a sex-stratified analysis for type 2
diabetes itself. In the UK Biobank, we found that the asso-
ciation was limited to men (OR 3.05 [95% CI 2.10–4.43];
P = 5 × 10�9) as opposed to women (OR 0.89 [95% CI
0.42–1.87]; P = 0.75), with an interaction P value of 7 ×
10�7. We replicated this finding in our replication cohorts
(Supplementary Table 11). Meta-analysis across cohorts
confirmed a large effect in men (OR 2.99 [95% CI 2.18–
4.10]; P = 1 × 10�11) and little to no effect in women (OR
1.41 [95% CI 0.87–2.28]; P = 0.15).

Metabolome-Wide Association Study
Our metabolome-wide association study showed wide-
spread changes in lipid-related phenotypes associated with
rs115018790, using a recessive model (Supplementary
Table 12), consistent with the aforementioned effects on
lipid biomarkers. The associations were generally stronger
in men than women and for the recessive model compared
with the additive model (Fig. 4A). A total of 120 metabolite
associations, many of them correlated with each other
(Fig. 4B), were significant after correcting for multiple test-
ing. The variant was particularly associated with decreased
cholesterol percentage (normalized b = �1.9 [95% CI
�2.1, �1.7]; P = 6 × 10�57) and increased triglyceride per-
centage (normalized b = 1.8 [95% CI 1.5–2.0]; P = 1 ×
10�49) in large LDL particles in men. We performed a
mediation analysis to test whether the effect of
rs115018790 on the risk of type 2 diabetes in men was
mediated by either of these two correlated metabolites,
and we found evidence for causal mediation (P < 1 ×
10�4) via both metabolomic parameters (Supplementary
Table 13).

Comparison With Known Lipid-Associated Variants
To put effect sizes into context, we compared rs115018790
with previously described lipid-related variants of large effect
size (33) using UK Biobank data. The LDL-lowering effect
(0.35 mmol/L [14 mg/dL]) of rs115018790 in homozygotes
was comparable to the effect (0.34 mmol/L [13 mg/dL]) of
carrying one copy of a well-known protective variant (rs11
591147) associated with the PCSK9 gene. The triglyceride-
increasing effect (0.35 mmol/L [31 mg/dL]) of rs115018790
in homozygotes was larger than the change (�0.29 mmol/L
[�26 mg/dL]) seen in homozygotes for a known variant
(rs1569209) linked to the lipoprotein lipase (LPL) gene,
known to be involved in triglyceride metabolism. For men,
the size of rs115018790s effect (0.58 mmol/L [51 mg/dL])
was almost double that of the LPL variant.

DISCUSSION

Type 2 diabetes is a highly polygenic trait, and hundreds
of loci associated with the disease have been identified,
mostly via large GWAS meta-analyses conducted under
additive genetic models (2,3). This prior work has pro-
duced useful results, identifying potential therapeutic tar-
gets and also enabling the creation of polygenic scores
capable of quantifying one’s genetic risk (34). A sizeable
fraction of the heritability of type 2 diabetes, however,
remains unexplained by loci identified using additive
models. Recessive modeling offers a way to identify new
associations, creating opportunities for discovery and
improved genetic risk stratification.

Our work takes advantage of the increasing number of
genetic data sets now available, and, to our knowledge, it
is currently the largest GWAS using a recessive model yet
reported for type 2 diabetes or any other complex disease.
We were able to identify multiple variants acting reces-
sively, including two low-frequency variants of large effect
size. Most of the variants identified via additive analyses
have ORs of less than 1.1, but the most significant variant
we identified had an OR of 2.56 in homozygous carriers.
Our minimum sample size to detect this variant was 10
times smaller because we used a recessive, not an addi-
tive, model.

This variant was located near the PELO gene, and one
of the six variants in the 99% credible set was in the
gene’s upstream 50 untranslated region, suggesting a
role for this variant in gene expression regulation, a link
we confirmed across multiple tissues using colocalization
approaches. Members of our group first identified this
association in one of our cohorts while conducting reces-
sive-model GWAS for multiple age-related diseases (11).
In this study, we confirmed the association with a larger
sample size, fine-mapped the region, and used the power
of the UK Biobank to demonstrate that the phenotypic
effects of this variant are not limited to type 2 diabetes.

Homozygous carriers of the PELO variant exhibit sig-
nificantly different circulating triglyceride and cholesterol
levels compared with other individuals. These effects were
most pronounced in men but were also seen in women,
and the effect sizes were clinically relevant and compara-
ble to previously discovered genetic variants that revealed
novel therapeutic targets. The reduction in LDL level
associated with rs115018790 was �10% (given an aver-
age LDL level of 3.62 mmol/L [140 mg/dL]), whereas sta-
tins, the most commonly used LDL-lowering medications,
typically lower LDL levels by 30% to 60% (35). As would
be expected for carriers of an LDL-lowering variant,
homozygotes for the minor allele at rs115018790 were
less likely to be taking statin medication. For triglycerides,
the effect size (20%) was even larger.

The overall consequences of the effect of variant
rs115018790 on lipid levels remain unclear. Low LDL
concentration is known to protect against cardiovascular
events. High levels of triglycerides and low HDL, on the
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other hand, are associated with cardiovascular disease,
although for these two lipid particles, it is not clear
whether the relationship is causal (36,37). For homozygotes

at rs115018790, the protective effects of lower LDL levels
may be offset by the high triglyceride and lower HDL levels,
meaning that the net effect on cardiovascular risk could be

Figure 4—Metabolite associations for variant rs115018790. (A) Volcano plots with normalized effect size on the x-axis and P value
(�log10) on the y-axis for each metabolite using an additive model and recessive models in the entire sample, in men, and in women. The
scale is the same in all plots. (B) A heat map of the top 33 metabolites in the male samples with the standardized recessive-model effect of
variant rs115018790 on each metabolite shown to the right of each row. IDL, intermediate-density lipoprotein; L, large; M, medium; S,
small; TL, total lipids; Trigl, triglycerides; VLDL, very-low-density lipoprotein; VS, very small.
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beneficial, harmful, or neutral. Our PheWAS did not reveal
associations with cardiovascular events such as myocardial
infarction or stroke. This lack of association, however, must
be interpreted with caution in the setting of limited power,
automatically curated phenotypes, and “healthy volunteer”
selection bias in the UK Biobank (38).

The mechanism by which PELO affects diabetes risk is
not clear. The gene is ubiquitously expressed, and its
genetic deletion in mice leads to embryonic lethality (39).
It is evolutionarily conserved and plays a role in rescuing
stalled ribosomes, thus affecting the translation of multi-
ple mRNA transcripts (40). It has a known role in sustaining
protein synthesis in developing blood cells and platelets
(41). Results of a recent CRISPR loss-of-function screen in
human pancreatic b cells suggest that PELO may also play a
role in insulin secretion (42). The sex-specific effect on dia-
betes risk in our study was striking, and more investigation
is needed to determine what factors underlie the increased
risk in men.

It is possible that the effect of PELO on diabetes risk is
mediated, at least in part, by lower LDL concentration
itself, or by lower cholesterol content within LDL, as sug-
gested by our mediation analyses. Statin therapy, which
lowers LDL levels, is known to be associated with new-
onset diabetes (43), and mendelian randomization studies
have suggested a causal link between lower LDL level and
type 2 diabetes (44,45). Homozygous carriers of variant
rs115018790 have reduced PELO expression in several
tissues, including the liver, suggesting that the PELO gene
could be contributing to a mechanism linking lower LDL
levels and diabetes risk.

Our metabolome-wide association study adds detail to
our understanding of the effect of PELO on lipids. Com-
paring our results with those of a prior prospective study
of almost 12,000 individuals followed for 8 to 15 years
(31), we found that many of the metabolomic pathways
associated with increased diabetes risk in that study were
also associated with variant rs115018790. For example,
our most strongly associated metabolite (cholesterol per-
centage in large LDL) was also associated with type 2 dia-
betes risk in the prospective study, with the same
direction of effect. Other metabolites known to be linked
to diabetes risk, such as monounsaturated versus polyun-
saturated fat percentages, were also significant in our
results. More studies will be needed to better understand
the clinical relevance of the lipid percentages in each of
the different lipoprotein classes.

One limitation of our study is the restriction of the
analyses to participants of European ancestry. Estimation
of recessive effects requires large sample sizes, because
homozygous carriers of low-frequency variants are rare.
Progress has been made in terms of recruiting diverse
participants for genetic studies, but people of European
ancestry still make up the bulk of available data sets. In
the future, nonadditive methods may yield new insights
when applied to non-European populations—work that

could be particularly fruitful given the increased genetic
diversity of these populations (46) and the increasing
availability of assembling multiethnic cohorts (47).

It is worth noting that most of the associations
detected in our recessive analysis had already been uncov-
ered in prior additive GWAS, and some of our novel sig-
nals deviated only slightly from additivity. Indeed, three
of the five seemingly recessive signals were common var-
iants, and they deviated only slightly from additivity, with
only a nominally significant P value, raising the possibility
that these variants have still an additive effect. This obser-
vation matches our power simulations comparing additive
and recessive models. In these simulations, the benefit of
the recessive model was significant at the low end of the
allele-frequency spectrum, whereas both models had simi-
lar power to detect high-frequency variants with recessive
effects.

Our work illustrates the value of performing nonaddi-
tive analyses to uncover low-frequency recessive variants.
By conducting what is currently the largest GWAS using a
recessive model for type 2 diabetes, we confirmed that a
variant linked to reduced PELO gene expression appears
to have significant effects not just on diabetes but also on
lipid metabolism. Recessive models of type 2 diabetes and
glycemic traits as part of larger and more diverse genetic
discovery efforts are likely to provide additional associa-
tions that, in turn, will provide a better understanding of
diabetes pathophysiology and possibly enhance the pre-
dictive power of polygenic scores.
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